28 research outputs found

    Isotropic Forms of Dynamics in the Relativistic Direct Interaction Theory

    Get PDF
    The Lagrangian relativistic direct interaction theory in the various forms of dynamics is formulated and its connections with the Fokker-type action theory and with the constrained Hamiltonian mechanics are established. The motion of classical two-particle system with relativistic direct interaction is analysed within the framework of isotropic forms of dynamics in the two- and four-dimensional space-time. Some relativistic exactly solvable quantum-mechanical models are also discussed.Comment: 49 pages, 12 figures, Latex2

    Fokker-Type Confinement Models from Effective Lagrangian in Classical Yang-Mills Theory

    Get PDF
    Abelian potentials of pointlike moving sources are obtained from the nonstandard theory of Yang--Mills field. They are used for the construction of the time-symmetric and time-asymmetric Fokker-type action integrals describing the dynamics of two-particle system with confinement interaction. The time-asymmetric model is reformulated in the framework of the Hamiltonian formalism. The corresponding two-body problem is reduced to quadratures. The behaviour of Regge trajectories is estimated within the semiclassical consideration.Comment: 40 pages, 8 figures, submit. to Internat. J. Modern Phys.

    Solvable Two-Body Dirac Equation as a Potential Model of Light Mesons

    No full text
    The two-body Dirac equation with general local potential is reduced to the pair of ordinary second-order differential equations for radial components of a wave function. The class of linear + Coulomb potentials with complicated spin-angular structure is found, for which the equation is exactly solvable. On this ground a relativistic potential model of light mesons is constructed and the mass spectrum is calculated. It is compared with experimental data

    Confinement interaction in nonlinear generalizations of the Wick-Cutkosky model

    Full text link
    We consider nonlinear-mediating-field generalizations of the Wick-Cutkosky model. Using an iterative approach and eliminating the mediating field by means of the covariant Green function we arrive at a Lagrangian density containing many-point time-nonlocal interaction terms. In low-order approximations of ϕ3+ϕ4\phi^3{+}\phi^4 theory we obtain the usual two-current interaction as well as a three-current interaction of a confining type. The same result is obtained without approximation for a version of the dipole model. The transition to the Hamiltonian formalism and subsequent canonical quantization is performed with time non-locality taken into account approximately. A relativistic three-particle wave equation is derived variationally by using a three-particle Fock space trial state. The non-relativistic limit of this equation is obtained and its properties are analyzed and discussed.Comment: 15 pages, 1 figure, LaTe

    Large-j Expansion Method for Two-Body Dirac Equation

    No full text
    By using symmetry properties, the two-body Dirac equation in coordinate representation is reduced to the coupled pair of radial second-order differential equations. Then the large-j expansion technique is used to solve a bound state problem. Linear-plus-Coulomb potentials of different spin structure are examined in order to describe the asymptotic degeneracy and fine splitting of light meson spectra

    Heuristic Models of Two-Fermion Relativistic Systems with Field-Type Interaction

    Get PDF
    We use the chain of simple heuristic expedients to obtain perturbative and exactly solvable relativistic spectra for a family of two-fermionic bound systems with Coulomb-like interaction. In the case of electromagnetic interaction the spectrum coincides up to the second order in a coupling constant with that following from the quantum electrodynamics. Discrepancy occurs only for S-states which is the well-known difficulty in the bound-state problem. The confinement interaction is considered too. PACS number(s): 03.65.Pm, 03.65.Ge, 12.39.PnComment: 16 pages, LaTeX 2.0
    corecore